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Continuous creep cavity nucleation by 
stochastic grain-boundary sliding 

K. S. CHAN, R. A. PAGE 
Southwest Research Institute, San Antonio, Texas 78284, USA 

Creep cavitation in metals and ceramics is generally considered to occur by the nucleation, 
growth, and coalescence of grain-boundary cavities. By considering grain-boundary slidings 
as the process driving force, a stochastic model is proposed for continuous cavity nucleation 
in metals and ceramics subjected to creep loading. The nucleation rate is shown to be directly 
proportional to the number of grain-boundary sliding events. The dependence of the number 
of cavities on grain boundary sliding displacement, creep strain, and time are established and 
compared with available experimental data of alumina, copper, and copper alloys. This com- 
parison supports the contention that creep cavity nucleation in metals and ceramics does 
originate from stochastic grain-boundary sliding. 

1. Introduct ion  
Cavity nucleation in metals and ceramics has generally 
been considered as a process which involves the con- 
densation of vacancies on grain boundaries subjected 
to high local tensile stresses [1-3]. Theoretical analyses 
[2, 3] indicate that tensile stress required to form a 
spherical cavity is of the order of E/100, where E is 
Young's modulus. Such a tensile stress is at least an 
order of magnitude higher than the service stresses at 
which cavities are observed in metals and ceramics. 
Thus, one or both of the following two things must be 
present in order for cavity nucleation to be feasible: 
(1) a local stress concentration of at least 10 to 20 at 
the potential cavity nucleation sites [3], and (2) the 
presence of favourable interfaces for the formation of 
non-spherical critical nuclei [1, 2, 4]. In some cases, a 
moderate stress concentration is required even for 
heterogeneous nucleation [4]. 

A variety of stress concentration sites and nucleation 
mechanisms, including stress concentration at particles, 
ledges, and triple points on sliding boundaries and 
the intersection of slip bands and grain-boundary 
particles, have been proposed for nucleating creep 
cavities in metals and ceramics (e.g., see [5-10]). By 
invoking stochastic grain-boundary sliding [3], most 
of the proposed mechanisms can generally provide the 
large local stress concentration required for nucleating 
cavities. The duration of the high tensile stress induced 
by sliding is, however, very short because of the 
competition of stress relaxation by diffusion [4]. In 
particular, Chan et al. [4] have shown that for a ledge 
on a sliding grain boundary, there exists only a small 
time period within which the local stress concentration 
is sufficiently large for cavity nucleation. Outside that 
time period, cavity nucleation is improbable because 
of an insufficient stress concentration. Thus, the 
relationship between stochastic grain-boundary slid- 
ing and continuous cavity nucleation remains unestab- 

lished. The objective of this paper is to quantify the 
role of the periodic, short-duration, grain-boundary 
sliding-induced stress "spikes" in the continuous 
nucleation of cavities in metals and ceramics. Stochastic 
grain-boundary sliding will be treated as a Poisson 
point process [11]. Accommodation of sliding grains 
by adjacent creeping grains will be considered. The 
cavity nucleation rate will be shown to depend on the 
number of stochastic grain-boundary sliding events. 
Expressions relating the number of cavities to grain- 
boundary sliding displacement, creep strain and time 
will be developed and compared with published data 
in the literature. The results of this work serve to 
demonstrate that stochastic grain-boundary sliding is 
the driving force for continuous cavity nucleation in 
metals and ceramics. 

2. Stochastic grain-boundary sliding 
It is envisioned that some of the grain boundaries in 
metals and ceramics subjected to creep loading would 
exhibit sliding in a stochastic manner, leading to stress 
concentrations and, therefore, cavity nucleation at 
inhomogeneities (particles, ledges, slip band inter- 
sections) located along the two-grain junctions or at 
triple-points. For clarity, the characteristics and 
current understanding of stochastic grain-boundary 
sliding is first reviewed. 

Stochastic grain-boundary sliding has been experi- 
mentally observed in a number of materials [12], 
including copper [13], aluminium [14-17], tin [18], 
NaC1 [19], and MgO [19] bicrystals. In the classic 
study of grain-boundary sliding in copper bicrystals, 
Intrater and Machlin [13] observed that each of the 
stochastic grain-boundary sliding events was distinct 
with the sliding distance/time curve, shown in Fig. 1, 
being characterized by null displacement periods and 
sudden displacement jumps. As pointed out recently 
by Page and Chan [20], those characteristics suggest 
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that stochastic grain-boundary sliding satisfies the 
conditions for a point process [11]. In addition, the 
grain-boundary sliding process can also be considered 
to evolve without effects, i.e. the past sliding events 
have no influence on the future behaviour, when 
grain-boundary sliding occurs under constrained con- 
ditions, such as in a typical polycrystalline material. 
On the basis of these assumptions, the counting 
process of the sliding events can be represented as an 
ordinary continuous time stochastic process of the 
Poisson type. Thus, the number of sliding events with 
epochs in the time interval (fi, t2) is described by the 
Poisson distribution, and the probability law of the 
stochastic sliding process is completely specified by its 
mean function, which represents the mean value of the 
number of grain-boundary sliding events. 

A simple function, #'(t), that satisfies the require- 
ments for a Poisson process and can be used for 
describing the mean value of the number of grain- 
boundary sliding events at time t, is [20] 

# ' ( t )  = ao t l -m/ (1  --  m )  (1) 

where a0 and m are constants. To satisfy the con- 
ditions for a Poisson process, a0 must be greater than 
zero (a 0 > 0) and m must be less than unity (m < 1). 
Fig. 1 shows that the sliding displacement per event, 
though varying somewhat with time, can be considered 
as essentially constant for modelling purposes. If  the 
average sliding distance for a sliding event is {x), the 
total grain-boundary sliding displacement, U, then 
becomes 

U ( t )  = a o { x ) ? - m / ( 1  - m )  (2) 

Figure 1 Characteristics of stochastic grain-boundary slid- 
ing in copper bicrystal at  2 .1MPa from Intrater  and 
Machlin [13]. 

300 

leading to 

Sg0(t ) = ao{X) t~-m/[ lo(1  -- m)] (3) 

when the sliding displacement, U, is divided by the 
initial gauge length, 10, of the specimen to obtain the 
average strain, •gb, due to grain-boundary sliding. 
The functional behaviour of Equations 2 and 3 is 
identical to typical creep curves, exhibiting transient, 
steady state, and tertiary regions when the value of m 
is less than unity. Specifically, the value of m ranges 
between zero and unity for transient behaviour, m = 0 
for steady-state conditions, and m < 0 for tertiary 
sliding. The value of m is expected to decrease with 
increasing time when sliding proceeds from the tran- 
sient stage to the steady state and tertiary stages. 

A review of the grain-boundary sliding measurements 
in the literature indicates that both Equations 2 and 3 
provide good descriptions of the grain-boundary slid- 
ing displacement and strain for metals [21, 22], 
as illustrated in Fig. 2a for copper [22]. Thus, 
when modelled as a Poisson process, stochastic grain- 
boundary sliding leads to time-dependent displace- 
ment or strain curves that are reminiscent of the creep 
curves. Fig. 2b also shows that the ratio of egb/et, 
where c t is the total macroscopic strain, in copper is 
relatively constant at 400~ and a stress of 17.9 MPa. 

3. A c c o m m o d a t i o n  o f  s t o c h a s t i c  
g r a i n - b o u n d a r y  s l i d i n g  

For compatibility reasons, stochastic grain-boundary 
sliding in polycrystalline materials must be accom- 
modated by neighbouring grains. As a result, stochastic 
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Figure 2 Grain-boundary sliding displacement and creep curves of copper, at 400~ and 17.9MPa, from McLean and Farmer [22]: (a) 
grain-boundary sliding displacement, grain-boundary sliding strain (~gb), and total creep strain (e,), and (b) egb/S t as a function of time. 
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Figure 3 A schematic drawing showing the changes in probability 
density function of grain sliding at a given value of A with time as 
theresultofstochasticgrain-boundarysliding. NotethatA = 1 for 
grains which deform by grain-boundary sliding only, and A = 0 for 
grains which deform by creep only. The majority of the grains 
deform by both creep and grain-boundary sliding. 

grain-boundary sliding and, therefore, cavity nucle- 
ation can sometimes be controlled by diffusion and/or 
the deformation characteristics of  the matrix, depend- 
ing on the active accommodation process. Assuming 
full matrix accommodation, the contribution of 
stochastic grain-boundary sliding to the total, macro- 
scopic strain rate, it, can be elucidated in a straight- 
forward manner. If one considers a polycrystalline 
material containing grains that deform initially, 
at t < 4, at a constant creep rate, ~c, and a con- 
stant sliding rate, ~gb, the total, macroscopic strain 
rate, it, then equals the sum of ~c and ig b for fully 
accommodated sliding. Denoting ~gb/it as A, the 
probability density function for the ith group of 
grains sliding at a given value of N (N = ~;gb/it) is 
then represented by the delta function, as illustrated in 
Fig. 3. At t > 6, stochastic grain-boundary sliding 
is allowed to occur in some of the grains such that Vii 
represents the volume fraction of the ith group of 

"~ Under this '~ and sliding at Sgb. grains creeping at eo 
condition, 

l 
"i ~' = 2 V/(4; -~- 8g b) 

i=1 

= ~c + igb (4) 
with l being the total number of  groups of  grains 
deforming and creeping at different values of N. For 
constrained deformation 

i t = ig b + i c ( 5 )  

for all values of A s ranging from 0 to 1. Substituting 
Equation 5 into Equation 4 leads to 2; Vii = 1, as it 
should. For t > t~, the probability density function 
for grains of a given A i is no longer described by the 
delta function, but instead by a function which shows 
a finite probability value for each possible value of N, 

as illustrated in Fig. 3. Thus, the volume fraction of 
grains sliding at a given value of N can vary with time, 
even though the macroscopic strain rate, et, is con- 
stant for constrained deformation. Because grains 
which manifest large sliding components are the only 
likely sites for stress concentration, the number of  
eligible grain boundaries for cavity nucleation is limited 
by the shape of the distribution function near N = 1. 

Experimental values of the ratio of grain-boundary 
sliding strain to total creep strain, A, have been reported 
for a large number of metals. From Equation 4 

�9 / 

A - egb _ ~;gb - -  2 V / N  (6 )  
/~t ~t i = 1 

which indicates that the macroscopic grain-boundary 
sliding displacement measurements contain contribu- 
tions of  both the ratio of N(~b/i[) and the volume 
fraction, V;, of individual grains undergoing stochastic 
grain-boundary sliding. The experimental results for 
copper [22] in Fig. 2 indicate that A is relatively insen- 
sitive to time and is approximately constant for a 
particular temperature and stress; the probability 
of grain-boundary sliding is, therefore, essentially 
the same in the transient, steady-state, and tertiary 
creep regimes. Relatively constant values of A which 
are independent of creep time but dependent on 
temperature and stress have also been observed in 
other metals, including aluminium, iron, zinc, and 

�9 aluminium and copper alloys [22]. 

4. Stochastic grain-boundary sliding 
and cavity nucleation 

Experimental evidence indicates that cavity nucleation 
in engineering alloys and metals generally requires 
both grain-boundary sliding and grain-boundary par- 
ticles [1, 2, 23, 24] or ledges [4, 20, 25, 26]. In the 
former case, cavities have been found to nucleate 
preferentially at particles on sliding grain boundaries 
but not at sliding grain boundaries without particles 
[8, 27, 28]. In contrast, cavities in ceramics have been 
observed to nucleate near three-grain junctions (triple 
points) [29, 30], and then propagate along grain facets 
to form facet-sized cavities. Recent experimental 
evidence, based on transmission electron microscopy 
[4, 31] and small-angle neutron scattering measure- 
ments [32-36], has demonstrated that creep cavities in 
ceramics also nucleate at ledges along two-grain junc- 
tions. This observation has been noted in ceramics 
both with [31, 34-36] and without [4, 32, 33] grain- 
boundary amorphous phases. In all cases, stochastic 
grain-boundary sliding is required in order to achieve 
the stress concentration necessary for cavity nucleation 

'~n 7 Slidingboundarygrain ~ "~n 
Sliding grain 
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(a) (b) 
Figure 4 Schematic drawings showing sliding of a grain boundary containing either (a) ledges or (b) particles. 
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Figure 5 Time-dependen t  stress concen t r a t ion  factor  for a ledge on 

a s l id ing gra in  bounda ry ,  f rom C h a n e t  al. [4]. Ledge he ight  = 

8 n m ,  ledge spac ing  = 4 0 0 n m ;  or(t) = q(t)~roo = 2q(t)r |  

at grain-boundary particles [1, 2, 24, 37, 38], triple 
points [39] or ledges [4]. 

The time-dependent stress concentration factor, 
q(t), for a ledge of  height, h, and spacing, 2, on a 
sliding boundary is [4] 

~(t) 
q(t) - 

2~ 

l { ~ [ l  e x p ( - - t / t B R ) ] e x p ( - - t / t c ) + C }  
2 

(7) 

with c = ~r~/zn, where o-, and v~ are the normal and 
shear stresses acting on the grain boundary prior to 
sliding (see Fig. 4a); c = - 1  for compression and 
c = 1 for tension of a sliding boundary aligned at 45 ~ 
to the stress axis. The characteristic time, tsR, for 
grain-boundary relaxation is [3] 

k T  
t B R  ~ -  

and it depends on the magnitude, b, of  the Burgers 
vector, temperature (T), ledge spacing, shear modulus 
(G), and the grain-boundary diffusivity (DbSb); k is 
the Boltzmann constant and g(h/2) is the boundary- 
correction factor whose value depends on the ledge 
height to spacing ratio. The characteristic time, t~, for 
relaxing the elastic stress concentration at the ledge by 
grain-boundary diffusion is [4] 

(1 - v)kTh 3 
tc - (9) 

4~DbfuG 

where v is Poisson's ratio and ~1 is the atomic volume. 
The time-dependent stress concentration factor for a 

T A B L E  I Mate r i a l  cons tan t s  for s intered A1203 (Lucalox)  at  
1600 ~ C 

Cons t an t s  Values  

f~ 

Db 5b 
G 

b 
k 

7~ 
n o 

4.2 x 10 -29 m 3 

2.7 x 10 -2~ m 3 sec - l  

1.182 x 105MPa  
4.76 x 10 l ~  

1.38 x 10 - 2 3 J K  
1 J M  -2 

1 x 10~8m -3 

particle size, p, and spacing, L, on a sliding boundary 
(Fig. 4b) can be obtained using the same approach 
employed in the ledge model of  Chan et al. [4]. The 
analysis indicates that replacing 2 with L and h with 
p in Equations 7, 8, and 9 lead to the appropriate 
equations for the time-dependent stress concentration 
factor for a particle on a sliding boundary. 

The time-dependent behaviour of  the stress con- 
centration at a ledge on a 45 ~ sliding boundary is 
illustrated in Fig. 5 for a Lucalox alumina subject 
to a compressive stress of  140MPa at 1600~ The 
relevant material properties required for this calcu- 
lation are summarized in Table I; the ledge height is 
8 nm, and the ledge spacing is 400 nm. The stress 
concentration factor, q(t), is seen to first increase but 
then decreases with time, resulting in a maximum stress 
concentration factor of 8.5 at t/tc = 0.6. The time 
period over which a high stress concentration factor 
(e.g. q(t) > 5) exists, however, only lasts about  one 
characteristic to, which is 165 nsec for this particular 
case. It is only within this extremely short time period 
that cavities can nucleate and grow beyond a critical 
size. 

If one considers thermal nucleation, the rate of 
cavity nucleation, n, is given by [1, 24, 39] 

with 

= 19n0 ( lO) 

= 4n~,sZ sin O~/[ff(t)~'~4/3]Db(~ b 

• exp [-@~Fv/(a(t)2kT)] (11) 

where no is the number of available nucleation sites 
per unit volume, Z is the Zeldovich non-equilibrium 
factor, 7~ is the surface energy of the cavities, a(t) is the 
normal stress across the grain bohndary, and Fv is the 
cavity shape parameter which yields the volume of the 
critical nucleus when multiplied by R 3 with R being the 
critical radius. The cavity nucleation rate is generally 
dominated by the exponential term in Equation 11 
which gives a threshold-like behaviour. The import- 
ance of the large transient local tensile stress induced 
at grain-boundary ledges or particles by stochastic 
grain-boundary sliding is, therefore, quite obvious. 

Using material properties listed in Table I, the 
nucleation kinetics of creep cavities at a ledged grain 
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Figure 7 Number of cavities as a function of time normalized by the 
characteristic time, t~. The total number of cavities nucleated is 
528 nuclei/m 3 which remains unchanged with increasing time for 

t >/ 0.8t c. No cavities are nucleated until t > 0.45t c. 

boundary in Lucalox alumina has been calculated by 
combining Equations 7, 10, and 11 and integrating 
numerically with time. The nucleation rate and number 
of cavity nuclei corresponding to the time-dependent 
stress concentration factor in Fig. 5 are presented in 
Figs 6 and 7, respectively. As expected, the maximum 
nucleation rate is observed at the maximum value of 
q(t). The number of cavities nucleated is 528 m 3. The 
period, co, during which cavity nucleation can occur is 
only 30 nsec, which is approximately 0.175tc. Further- 
more, almost all of the cavities are formed at or near 
the peak of the transient stress pulse. Outside this 
period, the stress concentration is insufficient to cause 
cavity nucleation. Thus, co can be considered as the 
effective width of the transient stress pulse during 
which all the cavities are nucleated. 

Nucleation kinetics calculations have also been per- 
formed as a function of the ledge height to spacing 
ratio. The maximum value of the transient stress con- 
centration factor, q(t), has been found to depend on 
the ratio of h/k, as shown in Fig. 8. Specifically, a low 
stress concentration factor occurs at a small ledge 
height because grain-boundary diffusion is effective 
in relaxing the local tensile stress induced by grain- 
boundary sliding, primarily due to a short diffusion 
distance. As the ledge height is increased, the diffusion 
distance and the ledge area supporting the local tensile 
stress are both increased. Because these two factors 
produce opposite effects on stress concentration, the 
value of q(t) exhibits a maximum in a manner shown 
in Fig. 8. The consequence is that there exists a small 
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Figure 8 Time-dependent stress concentration factor, q(t), as a 
function of ledge height at a constant ledge space of 400nm. 
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Figure 9 The total number of cavities nucleated, nmax, as a function 
of ledge height at 2 = 400 nm. 

range of h/,~ ratios within which most of the cavity 
nuclei are produced, as depicted in Figs 9 and 10 
which show ~i and the number of nuclei formed for 
various hi2 values. The effective width, co, of the stress 
pulse is shown in Fig. 11 in terms of both the charac- 
teristic time, to, and the actual time period in which 
cavity nucleation occurs. The range of hi2 within 
which cavities are formed is 0.015 to 0.055. Outside 
this range 2V ~ 0 and the number of cavities formed 
is negligible (less than 1 nucleus/m 3). Thus, the presence 
of ledges on a sliding boundary is not a sufficient 
condition for cavity nucleation to occur; a proper or 
eligible ledge height to spacing ratio is also required. 
Similarly, a particle size to spacing of 0.015 to 0.055 is 
also necessary for cavity nucleation at particles on 
sliding grain boundaries. 

Based on these results, it becomes apparent that 
grain-boundary sliding can be a source of continuous 
cavity nucleation only if the process occurs repeated 
over an extended period of time, i.e. the number of 
sliding events must increase with time. In other words, 
continuous cavity nucleation requires stochastic 
grain-boundary sliding of the Poisson type. Addition- 
ally, eligible nucleation sites must also be present on 
the grain boundaries. For these two reasons, it is more 
appropriate to write the cavity nucleation rate as 

/7 = (12) 

where D is the grain size, F0 is the number of eligible 
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height at I = 400nm. 
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Figure 11 The effective width (time period), o, of the tran- 
sient stress pulse within which cavities are nucleated as a 
function of ledge height at 2 = 400 nm. 

nucleation sites per unit area of an individual sliding 
grain boundary, and 37 is given by Equation 11. Both 
F0 and 3? are functions of hi2. Because all of the 
cavities are nucleated near the peak of the transient 
stress pulse (3? = 0 outside co), the number of cavities, 
Arc/V is thus given by 

N~ f~ n dt 
V 

= ]Vrnax(h/2)~(h/).)r'o(h/)~)/D (13) 

where 37~.• is the maximum nucleation rate evaluated 
at the minimum value of q(t). When all of the stoch- 
astic grain-boundary sliding events are considered 

h/2 = oo 

2 V h/;.=o 

leading to 

with 

It, (t)3?~ax(hl2)o(hl2)Fo(hl2)lD (14) 

N~ 
T = U'(0F (15) 

l h/2=0.055 

F =--D h/;.=0.0~5 ~ 3?max(h/2)co(h/2)Fo(h/2) (16) 

because 2Vm~,(h/2)o~(h/2) = 0 for values of h/2 lying 
outside the eligible range (0.015 < h/2 > 0.055). 

An important feature of Equation 15 is that it relates 
the number of cavities directly to the mean function, 
#'(t), representing the number of stochastic grain- 
boundary sliding events. Because the grain-boundary 
sliding displacement is also directly related to #'(t), the 
relation between N J V  and grain-boundary displace- 
ment can be established by combining Equations 2 
and 15, yielding 

leading to 

N~ FU(t) 
v (x) 

(17) 

N, Ft0 
= ( x )  Bgb (t) (18) 

and 

N~ G A  
v (x) - -  et(t) (19) 

when Equations 3 and 6 are substituted into Equation 
17, respectively. 

One of the significant findings of the proposed 
model is an expression relating cavity density to the 
number of stochastic grain-boundary sliding events, 
which appears to be the first of its kind. Combining 
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Figure 12 The time dependence of grain-boundary sliding and number of cavities in copper: (a) grain-boundary sliding displacement plotted 
against time, from Intrater and Machlin [13], applied stress = 2.1 MPa, u oc t  ~ and (b) number of cavities per volume, Nc/V, plotted 
against time for copper at 400~ 40 MPa, from Gittens [40], N~/V oc t  ~ The proposed cavity nucleation theory predicts the same time 
exponent for both grain-boundary sliding and N~/V. 
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Equations 1 and 15 leads to 

Nc _ a~ t l-m (20) 
V 1 - m  

and the conclusion that the cavity nucleation and 
stochastic grain-boundary sliding rates must have 
the same time exponent, primarily because of their 
dependence on the number of sliding events. The 
consequences of an identical time exponent in the 
cavity nucleation and sliding kinetics are linear 
relationships between cavity density, grain-boundary 
sliding displacement and strain, and creep strain. 

Experimental evidence verifying the proposed 
relationships between the cavity density and creep 
time, grain-boundary sliding displacement and strain, 
and creep strain are shown in Figs 12 to 15. In 
Fig. 12a, the time exponent for the grain-boundary 
sliding displacement in copper is shown to be 0.65 [13]. 
According to the proposed theory, the time exponent, 
/3 (/3 = 1 - m), for the cavity density should also be 
0.65, being identical to that for grain-boundary slid- 
ing. As shown in Fig. 12b, the observed value is 0.5 
[40]. For most metals,/3 ranges from 0.38 to 1.0 [20]. 
The predicted linear relationship between N J V  and 
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Figure 14 Linear dependence of  number  of  cavities on creep strain 
observed in AD99 alumina at 1300 ~ C. Plot is based on data of  Page 
et al. [36]. r = (e)  26 MPa, (o)  48 MPa. 

grain-boundary sliding displacement has been observed 
in a copper alloy [41] as shown in Fig. 13a, and the 
linear relation between Nc/V and creep strain has been 
demonstrated for copper [42], as shown in Fig. 13b. 
Previously, Dyson [43] has also shown a linear behav- 
iour between Nc/V and creep strain for iron, steels, 
and a nickel-based alloy (Nimonic 80A). The results 
in Figs 12 and 13 demonstrate the intimate relation- 
ship between stochastic grain-boundary sliding and 
cavity nucleation in metals. In particular, these results 
demonstrate that stochastic grain-boundary sliding is 
present throughout the creep process, including the 
transient, steady-state, and tertiary regions. It contri- 
butes to the macroscopic creep strain as well as pro- 
viding the local tensile stresses for cavity nucleation 
throughout the three stages of creep. 

For the ceramic systems for which nucleation data 
have been obtained, values of/3 ranging from 0.19 to 
1.0 have been observed [20]. These results are quite 
similar to the/3 values ranging from 0.38 to 1.0 that 
have been obtained for metallic materials. Unfor- 

I I I I 

4 

u 3 

2 

o 

o [ I I I 
2 4 6 8 10 

Creep strain (%) 

Figure 15 Linear dependence of number  of  cavities on creep strain 
observed in Lucalox alumina at 1600~ Plot is based on data of  
Page et al. [451. Grain size = (e)  20 #m, (0)  37 #m. 
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tunately, grain-boundary sliding displacement data, 
however, are not presently available for any of the 
ceramic systems. It is, therefore, not possible to make 
a direct comparison between theory and experiment 
for the ceramic systems at the present time. Despite 
this fact, experimental evidence suggests that cavity 
nucleation in ceramics also originates from stochastic 
grain-boundary sliding; both grain-boundary ledges 
of height ranging from ~ 4 [44] to 20nm [36] and 
cavities nucleated at grain-boundary ledges (see [4]) 
have been reported. Additionally, a linear relationship 
between N~/V and creep strain have been observed in 
AD99 alumina and in Lucalox alumina, as shown in 
Figs 14 and 15, respectively. Thus, it appears that 
stochastic grain-boundary sliding is the most likely 
driving force for continuous cavity nucleation in both 
metals and ceramics. 

5. Conclusions 
1. Stochastic grain-boundary sliding has been iden- 

tified as the most likely driving force for continuous 
cavity nucleation in both metals and ceramics. 

2. The number of cavities nucleated in metals and 
ceramics under creep loading is directly related to the 
number of stochastic grain-boundary sliding events. 
The cavity nucleation and grain-boundary sliding 
rates are predicted to have the same time exponent. 

3. The dependence of the cavity density on grain- 
boundary sliding displacement, strain, and creep time 
are correctly predicted when stochastic grain-boundary 
sliding is modelled as a Poisson point process. 

4. Cavity nucleation induced by stochastic grain- 
boundary sliding occurs within a small time period 
after the commencement of sliding and within a small 
range of ledge height to spacing or particle size to 
spacing ratios only. 
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